NEPP Electronic Technology Workshop June 22-24, 2010

Nonvolatile Memory Technology for Space Applications

Timothy R. Oldham¹, Farokh Irom², Mark Friendlich³, Duc Nguyen², Hak Kim³, Melanie Berg³, and Kenneth A. LaBel⁴

 Dell-Perot Systems, Inc./NASA GSFC; 2. NASA Jet Propulsion Laboratory; 3. MEI, Inc./NASA GSFC; 4. NASA

June 23, 2010

Introduction Nonvolatile Memories

- Flash (NAND, NOR)
- Charge Trap
- Nanocrystal Flash
- Magnetic Memory (MRAM)
- Phase Change--Chalcogenide, (CRAM)
- Ferroelectric (FRAM)
- CNT
- Resistive RAM

Flash Background

- –Disadvantages
- Slow programming
- Wear out
- Scaling/retention
- –Advantages
- Cost per bit
- Low power
- -Bottom Line: Heavily used in hand-held, battery-powered consumer electronics (cell phones, iPods, digital cameras, MP3)

Floating Gate Transistor

- Write (Program) operation—Fowler-Nordheim (FN) injection of electrons into FG
- Erase operation—FN injection of electrons from FG to substrate
- Repeated P/E operations cause damage to tunnel oxide

Flash Architectures

Flash Radiation Response

- TID response frequently very good for NAND
- NOR TID not so good
- SEU bit error rate very good compared to most volatile memories
- Control logic errors (SEFIs) are biggest problem, mitigation strategies very important

Evaluation of Non-Volatile Memory

- -Description: This is a continuation task for evaluating the effects of scaling (<100nm), new materials, etc. on state-of-the-art (SOTA) non-volatile memory (NVM) technologies. The intent is to:
- Determine inherent radiation tolerance and sensitivities,
- Identify challenges for future radiation hardening efforts,
- Investigate new failure modes and effects, and
- Provide data to technology modeling programs.
- -Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), magnetic, phase change, etc...
- -Angular effects as well as statistical analysis are key considerations.

FY10 Plans:

- -Probable test structures
- -Flash (NAND)
 - -Samsung 8G, (SLC and MLC), Micron (8G), Numonyx (4G)
 - -Micron 128G stack, Micron 64G monolithic
- -Flash (NOR)--Spansion 1G MirrorBit
- -Phase change --Numonyx
- -FRAM--TI hardened and unhardened
- -MRAM—Avalanche Spin Torque
- -New tests:
- Reliability study, retention after radiation exposure and cycling
- –Test Guideline
- Develop draft guideline for radiation testing

NVM		2009			2010								
	Radiation T&E	0	N	D	J	F	M	Α	M	J	J	Α	S
	Monitor MRAM, CRAM, CNT, and												
	FeRAM progress												
	Micron 128G Stack-SEE				\Diamond								
	Numonyx 4G NAND TID, SEE								\Diamond		\Diamond		
	Sams, Micron 8G SEE								\Diamond			\Diamond	
	Sams, Mic Retention Test				\Diamond								
	Micron TID										\Diamond		
	Current Spike Report				•	\Diamond							

Deliverables:

- -Test reports and quarterly reports
- -Submissions to IEEE NSREC (TNS and REDW) and SEE Symposium.
- -Draft test and application guideline.

NASA and Non-NASA Organizations/Procurements:

Beam procurements: TAMU, IUCF, REF

NASA Flight Project Funds (Magnetospheric MultiScalar -MMS)

Partners: SWRI, Samsung, Micron, Numonyx, Avalanche

Semiconductor, Unity

PI: GSFC/Oldham: JPL/Irom

Spin Torque MRAM TID

Test Reports

Schedule:

Evaluation of Non-Volatile Memory Goals

- Utilize flash memories as test vehicles for radiation effects understanding of scaled CMOS
- Characterize advanced hardened and unhardened nonvolatile memories. This includes:
- New materials
- New technologies and architectures
 - Current flash operate at 3.3V, 40 MHz
 - Increase speed with new 45 nm (16G SLC)
- Identify new failure modes including combined effects
- Develop new test methods and identify mitigating strategies

New failure modes

Expected Impact to Community

- NVM has always been critical in some applications, e.g., critical flight data, and flight control software
- Solid state NVM starting to be used in SSR (Solid State Recorders), replacing volatile memories
- Solid state NVM has speed advantage over hard disk drives
- NAND flash has advantage over most alternatives in cost per bit

Nonvolatile Memory Evaluation Status

- Phase Change—samples obtained from Numonyx, SEE and TID testing performed
- STT-MRAM—Avalanche to supply test structures,
 TID proton test planned
- CNT—LM to supply test structures, unclear when
- FeRAM—TI, compare response of hardened and unhardened versions
- Cypress NVSRAM—samples received, laser test planned
- Unity—transistor-less RAM, to supply test structures

Non-Volatile Memory Schedule

FY10 Deliverables	Quarter Due	Quarter Completed	Notes
Micron 8G, 64G Flash HI Tests	Test 4QFY10 Report 1QFY11		
Micron 32G MLC HI Test	1Q FY10	1Q FY10	NSREC 2010 DW
Numonyx 4GTID/HI tests	TID 4QFY10 HI 3QFY10	HI 3Q FY10	
Spansion 1G MirrorBit NOR TID	Test 4QFY10 Report 4QFY10		Postponed from FY09
Micron 32G MLC TID	2Q FY10	2Q FY10	NSREC 2010 DW
Micron, Samsung Retention Tests	Begin 4QFY10 Continue FY11		NSREC paper to be submitted for July 2011
SP-MRAM TID Test	3QFY10		

Highlights/Accomplishments

NASA

Single Event Upset Results

- SEU events were measured at BNL on SLC devices (1, 2, 4 & 8Gb).
- All three samples showed excellent agreement.
- No noticeable scaling effect in the range of 120-72 nm
- Error bars smaller than plotting symbols
- There is a reduction in the SEU cross section at 51 nm feature size.

 Measured SEU cross-sections for Micron Technology SLC NAND flash memories. Only minimal dependence on feature size.

Highlights/Accomplishments

Single Event Upset Results

 The three samples measurements show excellent agreement.

- The FG SEU cross-section per bit is on the order of 3×10⁻¹⁰ cm²/bit. Error bars smaller than plotting symbols.
- The FG SEU rate is 5.1x10⁻⁹
 per bit per day for the
 background GCRs environment.
- Micron 32G MLC NAND, 32 nm technology.

-SEU cross-section for Micron Technology 32Gb MLC NAND flash memory, order of magnitude smaller than 8G MLC

Highlights/Accomplishments

Numonyx 4G NAND SEE Test Results

- One destructive event after 2.3x10⁷ Xe ions/cm², equivalent to 2.7x10⁹ years in geosynchronous orbit
- SEU rate manageable, especially with EDAC
- SEFI impact unclear, mitigation required

Not enough data to endorse for flight programs, yet,
 but initial results are promising

Highlights/Accomplishments Reliability/Endurance Study

No clear indication that radiation exposure reduces flash endurance

Highlights/Accomplishments Current Spikes

- Current spikes observed in some experiments, not in others
- Two joint experiments have failed to explain differences
- Agreed to disagree, for now

Phase Change Highlights

- Heavy ion testing performed at TAMU
- Chalcogenide storage element appeared to be "bullet proof"
- Unhardened commercial substrate suffered SEL
- TID better than 100 krads (SiO₂)

Radiation Testing—Lessons Learned

- Angular effects matter—differences observed between normal and high angle, also between tilt and roll at same angle
- Destructive effects in flash occur primarily in high voltage Program or Erase operations—have to emphasize
- Try to keep flux low enough to avoid collective effects, but want high fluence for good statistics—trade-offs to optimize beam time
- Have to estimate rate in space for effects observed in testing,
 e.g., flux in space at LET>60 is less than 1 ion/cm² per hundred years

Plans (FY10/11)

- Reliability study—retention after cycling and radiation exposure
- Characterize Micron single die, SLC 64G NAND (25 nm)
- Compare SLC/MLC response (e.g., Samsung 8G)
- Prepare draft test guideline document for NVM testing
- Monitor development of new NVM technologies, perform testing as test vehicles become available